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Classical Mereology 



Formal Theories 
A formal theory is specified by a collection of 

formulas of a formal deductive system. These 
formulas are the axioms of the theory. Think 
of the axioms as postulates of the theory—the 
basic assumptions made for reasoning about 
a given topic.  

For this class, we will generally assume that our 
formal deductive system is standard first-
order with designated symbols for 
mereological (part-whole) relations. 



Primitive vs. Defined Relations  

•  All formal mereologies assume one or more 
relation primitives. These relations are not 
defined. Instead, their logical properties are 
fixed by the axioms of the theory. All 
primitives must be interpreted in a way that 
preserves these logical properties. 

•  All other relations (the defined relations) in 
the mereology are defined in terms of the 
primitive relations. 



 Axioms, Definitions, and 
Theorems 

In applying a theory, 3 different kinds of 
formulas are important: 

•  The axioms of a theory are the formulas 
which fix the logical properties of the primitive 
relations. 

•  The definitions of a theory are the formulas 
which introduce the defined relations. 

•  The theorems of a theory are the formulas 
that can be derived from the axioms and 
definitions using the machinery of the 
background deductive system (e.g. a set of 
axioms and deductive rules for standard first-
order logic). 



Models for Formal Theories 

A model is given for a formal theory by 
specifying:  

1. A domain (i.e., a set of individuals over which 
quantifiers range) for the model  

2. Interpretations for the primitives of the theory 
as relations on the domain which satisfy the 
theory’s axioms (I.e. interpretations of the 
primitives over the domain which make the 
axioms true). 



Classical Mereology  

Our version of classical mereology 
assumes 2 kinds of entities in the 
domain of quantification: individuals (x, 
y, z,…) and collections of individuals (A, 
B, C,…).   

One mereological primitive: the binary 
relation P where on the intended 
interpretation Pxy means: 

x is part of y 



Classical Mereology: Definitions 
PPxy =: Pxy & x ≠ y    
(x is a proper part of y: x is part of y and x isn’t identical to y) 
Example: my hand is a proper part of my body 

Oxy =: ∃z (Pzx & Pzy)  
(x overlaps y: some object z is part of both x and y) 
 Example: my vertebral column overlaps my pelvis 

DSxy =: ~ Oxy    
(x and y are discrete: x and y do not overlap) 
Example: my nose and my left foot are discrete 

SUM(x, A) =: ∀y (y ∈ A → Pyx) & ∀z ( Pzx → ∃y (y ∈ A  
& Ozy)) 

(x is the sum of the members of A: every member of A is part 
of x and every part of x overlaps some member of A) 



Classical Mereology: Axioms 

(A1) Pxx   (reflexivity: for any x, x is part of 
itself) 

(A2) Pxy & Pyz → Pxz   (transitivity: if x is part 
of y and y is part of z, then x is part of z) 

(A3) Pxy & Pyx → x = y (antisymmetry: if x is 
part of y and y is part of x, then x and y are 
identical) 



Classical Mereology: Axioms 

(A4) ~Pxy → ∃z( Pzx &  DSzy) 
(the strong supplementation principle: if x is not part of 

y, then there is some z that is part of x and discrete 
from y) 

(A5) ∃y y ∈ A → ∃x SUM(x, A) 
(Universal Fusion Principle: every non-empty collection 

of individuals has a sum)  



Some Theorems of Classical 
Mereology 

(T1) ∀z (Ozx → Ozy) → Pxy 
(if everything that overlaps x also overlaps 

y, then x is part of y) 
(T2) ∀z (Ozx ↔ Ozy) → x =y 
(if x and y overlap the same things, then x 

and y are identical) 
(T3) SUM(x, A) & SUM(y, A) → x =y 
(every collection of individuals has at 

most one sum)  



A Class of Models for 
Classical Mereology 

Let S be any non-empty set. Let SB(S) be 
the set of all non-empty subsets of S. 
Take SB(S) as the domain of the model. 
Interpret P as the subset relation on 
SB(S).  

Exercises: (i) what interpretations will PP, 
O, DS, and SUM have in these models?  
(ii) show that axioms (A1)-(A5) are 
satisfied over these models.  



A Specific Model 

Let S = {1, 2}. List the members of SB(S) 
and the interpretations of P, PP, O, DS, 
and SUM. Note that the classical 
axioms are satisfied. 



A Spatial Model 

•  Let S = ℜ3. SB(ℜ3) is the set of all non-empty 
subsets of ℜ3. P is interpreted as the subset 
relation on SB(ℜ3), PP is interpreted as the 
proper subset relation on SB(ℜ3), O is 
interpreted as the relation which holds 
between subsets with a non-empty 
intersection, and DS is interpreted as the 
relation which holds between subsets with an 
empty intersection. 



II. Weaker Mereologies 



Some Unintuitive Commitments of Classical 
Mereology  

∃y y ∈ A → ∃x SUM(x, A)  
For every non-empty collection of objects, 

there is some object which they all 
compose. 

SUM(x, A) & SUM(y, A) → x =y 
Every collection of objects composes at 

most one object.  



Weaker Mereologies 
Can be generated by just removing 

axioms from classical mereology: 
(A1) Pxx 
(A2) Pxy & Pyz → Pxz 
(A3) Pxy & Pyx → x = y 
(A4) ~Pxy → ∃z( Pzx &  DSzy) 
OR: 
(A1) Pxx 
(A2) Pxy & Pyz → Pxz 
(A4) ~Pxy → ∃z( Pzx &  DSzy) 



OR problematic axioms can be replaced 
by weaker assumptions  

Define Uyz =: ∃w (Pyw & Pzw)   
(y and z underlap: there is some object w of which y and 

z are both parts) 

(A1) Pxx 
(A2) Pxy & Pyz → Pxz 
(A3) Pxy & Pyx → x = y 
(A4) ~Pxy → ∃z( Pzx &  DSzy) 
(A5*) ∃y y ∈ A & ∀y∀z(y,z ∈ A  →Uyz) → ∃x SUM(x, A) 
(every non-empty collection of pairwise underlapping 

objects has a sum)  



Another weaker mereology 

Define zDIFyx =:∀w (Owz ↔ ∃v (Pvx & DSvy & Ovw)) 
(z is the difference of y in x: z consists of all of x that is 

discrete from y) 

(A1) Pxx 
(A2) Pxy & Pyz → Pxz 
(A3) Pxy & Pyx → x = y 
(A4/5*) ~Pxy → ∃z zDIFyx 
(if x is not part of y, then there is an object which is the 

difference of y in x) 
Note: (A4/5*) is stronger than (A4) and weaker than 

(A5). 



Exercise 

• Which (possibly) undesirable results do 
the two preceding mereologies avoid? 

• What might we do to avoid other 
(possibly) undesirable commitments? 



III. Temporal Mereologies 



A temporal version of classical 
mereology (TCM) 

TCM has objects, collections of objects, and 
times as disjoint sorts of entities. Use 
variables: w, x,y,z for objects; A,B, C, for 
collections; and s,t for times. 

TCM has one mereological primitive: the ternary 
relation P (parthood). P takes two objects and 
a time as its arguments.  

Pxyt 
Is intended as: 

Object x is part of object y at time t.   



Defined Relations 
PPxyt =: Pxyt & ~Pyxt 
(x is a proper part of y at t: x is part of y at t and 

y is not part of x at t ) 
Oxyt =: ∃z (Pzxt & Pzyt)  (x and y overlap at t: 

some object z is part of both x and y at t) 
DSxyt =: ~Oxyt (x and y are discrete at t: x and y 

do not overlap at t)  
Ext =: Pxxt   (x exists at time t: x is part of itself 

at t) 



TCM’s First Five Axioms 

(AT1) ∃t Ext  (every object exists at some time) 

(AT2) Pxyt → (Ext & Eyt)  (if x is part of y at t, then both 
x and y exist at t) 

(AT3) (Pxyt & Pyzt) → Pxzt  (if x is part of y at t and y is 
part of z at t, then x is part of z at t)  

(AT4) (Pxyt & Pyxt) → x = y (if x is part of y at t and y is 
part of x at t, then x and y are identical)  

(AT5) (Ext & ~Pxyt) → ∃z(Pzxt & DSzyt) (if x exists at t 
and x is not part of y at t, then x has some part z at t 
that is discrete from y at t) 



Temporal Relations for Collections 

FP(A, t) =: ∃x(x ∈ A) & ∀x (x ∈ A → Ext) 
(A is fully-present at t: there is some member of A and 

all members of A exist at t) 

SP(A, t) =: ∃x (x ∈ A & Ext) 
(A is some-present at t: some member of A exists at t) 

NP(A, t) =: ∀x ( x ∈ A → ~Ext) 
(A is non-present at t: no members of A exist at t) 



Summation Relations 
Time-Dependent General Summation: 
SUM(z, A, t) =: Ezt & ∀y (Oyzt ↔ ∃x(x ∈ A & Oyxt))   
(z is a sum of the A’s at t) 

SM1(x, A) =: ∀t (Ext → SUM(x, A, t)) 
(whenever x exists, x is a sum of A’s) 
SM2(x, A) =: ∀t (SP(A, t) → SUM(x, A, t)) 
(whenever A is some-present, x is a sum of A’s) 
SM3(x, A) =: ∀t (FP(A, t) → SUM(x, A, t)) 
(whenever A is fully-present, x is a sum of A’s) 
SM4(x, A) =: ∀t ((Ext ∨ SP(A, t)) → SUM(x, A, t))  
(whenever x exists or A is some-present, x is a sum of A’s) 

Examples? 



A Summation Axiom for TCM 

(AT6) SP(A, t) → ∃z SUM(z, A, t) 
(if some member of A exists at t, then 

there is a sum of A’s at t) 

NOTE: We could have instead used one 
of the time-independent relations to 
generate a different temporal version of 
CM. 



A Class of Models for TCM 
Let S be any non-empty set. Let T be a non-empty set 

of times. Let ℘(S) be the set of subsets of S. Let 
OB be any set of functions from T into ℘(S) s.t. for 
any f, g ∈ OB and any A ⊆ OB: 

1.  there is some t, s.t. f(t) ≠ ∅ 
2.  if f(t) = g(t), then f = g 
3.  if f(t) ≠ ∅ and f(t) ⊄ g(t), then there is some h ∈ OB 

s.t. h(t) ⊆ f(t) and h(t) ∩ g(t) = ∅  
4.  if there is some h ∈ A s.t. h(t) ≠ ∅, then there is 

some j ∈ OB s.t. j(t) = ∪h ∈ A h(t) 
5.  if f(t) ∩ g(t) ≠ ∅, then there is some h ∈ OB s.t ∅ ≠ 

h(t) ⊆ f(t) ∩ g(t)  



A Class of Models (con’t) 
If we interpret 
P ⇒ {<f, g, t>: f, g ∈ OB, t ∈ T, f(t) ≠ ∅, & 

f(t) ⊆ g(t) } 
then (AT1)-(AT6) are satisfied. (check!!) 

What are the interpretations of the defined 
relations? 



IV. Mereotopologies 



Connection 
We can add to any atemporal mereology 

the binary connection predicate C 
where Cxy is interpreted as: 

x is connected to y  
(i.e. x is zero distance from y) 

(For a temporal theory, we would use a 
ternary predicate and Cxyt would be 
interpreted as: 

x is connected to y at time t.)  



Axioms for Connection 
(weaker version )   

(AC1) Cxx  
(connection is reflexive) 
(AC2)  Cxy → Cyx   
(connection is symmetric) 
(AC3) Pxy → ∀z(Czx → Czy) 
(if x is part of y, then every thing that is 

connected to x is also connected to y)  



Additional Defined Relations 
ECxy =: Cxy & DSxy    
(x and y are externally connected: x and y are 

connected but do not overlap) 
TPxy =: Pxy & ∃z(ECzx & ECzy)  
(x is a tangential part of y: x is a part of y that is 

externally connected to something which is 
externally connected to y) 

IPxy =: Pxy & ~ TPxy 
(x is an interior part of y: x is part of y, but not a 

tangential part of y) 



Additional Defined Relations 

SCx =:∀y∀z SUM(x, {y, z}) → Cyz 
x is self-connected: any two parts that 

make up all of x are connected to each 
other (i.e. there is no way of dividing x 
into disconnected parts)     



Comparing Mereotopologies 
A weaker mereotopology uses 2 

mereotopological primitives (P and C) 
and 8 axioms: 

(A1) Pxx 
(A2) Pxy & Pyz → Pxz 
(A3) Pxy & Pyx → x = y 
(A4) ~Pxy → ∃z( Pzx &  DSzy) 
(A5) ∃y y ∈ A → ∃x SUM(x, A) 
(AC1) Cxx  
(AC2) Cxy → Cyx   
(AC3) Pxy → ∀z(Czx → Czy) 



A Stronger Mereotopology 
Uses C (connection) as its only mereotopological 

primitive and defines: 
Pxy =: ∀z(Czx → Czy) 
(x is part of y: everything that is connected to x is also 

connected to y) 
5 Axioms: 
(AC1) Cxx  
(AC2) Cxy → Cyx  
(A3) Pxy & Pyx → x = y 
(A4) ~Pxy → ∃z( Pzx &  DSzy) 
(A5) ∃y y ∈ A → ∃x SUM(x, A) 



(dis)advantages of the 
Stronger Mereotopology 

By defining parthood in terms of connection as 
Pxy =: ∀z(Czx → Czy) 
We rule out cases in which an object has a 

point-sized, line-sized, or surface-sized gap in 
the middle 

On the other hand, some ontologists want to 
rule out these sorts of irregularly-shaped 
objects anyway (along with lower-dimensional 
objects). If so, the stronger mereotopology 
may be preferable because it is more 
economical.  



V. Containment Relations 



Objects and Regions 
We can expand a basic mereology by adding 

vocabulary for describing where objects are 
positioned in a fixed back ground space. To do this, 
we need to expand our domain of quantification to 
include immaterial spatial regions as well as the 
material objects (and immaterial holes or cavities) 
which are located at those regions. 

 To the formal vocabulary we add the unary region 
function r which takes object or region terms as 
arguments and where 

r(x)  
is interpreted as the spatial region at which x is exactly 

located.     



Axioms for the Region 
Function 

(AR1) PPxy → PPr(x)r(y)    
(if x is a proper part of y, then x’s region is 

proper part of y’s region) 
(AR2) r(r(x)) = r(x)   
(x’s spatial region is its own spatial 

region) 



Region Containment 

RCONxy =:Pr(x)r(y)  
x is region-contained in y: x’s region is part of 

y’s region. 
Examples: 
My heart is region-contained 
in my middle mediastinal space. 
My larnyx is region-contained in my neck. 
NOTE: The larnyx is part of the neck. But the heart is 

not part of the middle mediastinal space. 

y x 



Convex Hulls 

The convex hull of an object or region x is 
the smallest convex region in which x is 
region-contained. 

We may add a separate primitive function 
mapping each object or region to its 
convex hull. 

ch(x) 
is x’s convex hull. 



Axioms for the convex hull 
function 

(AR3) Pr(x)ch(x)  
(x’s region is part of x’s convex hull) 
(AR4) RCONxy → Pch(x)ch(y)   
(if x is r-contained in y, then x’s convex 

hull is part of y’s convex hull) 
(AR5) ch(ch(x)) = ch(x)  
(x’s convex hull is its own convex hull) 



Surrounding  
SURxy =: Pr(x)ch(y) & DSr(x)r(y) 
x is surrounded by y: x’s region is part of y’s convex hull 

but x’s region does not overlap y’s region. 

Examples: My pleural space is surrounded by my pleural 
membrane. A bolus of food in my stomach is surrounded by the 
wall of my stomach. 

y x y x 



Partial Containment 

PCONxy =: Or(x)ch(y) 
x is partially contained in y: x’s region overlaps 

y’s convex hull. 

Examples: My esophagus is partially contained in my 
thoracic cavity. My tooth is partially contained in its 
socket. 

y 
x 

y x 



Logical Properties-- Transitivity 
RCON is transitive. SUR and PCON are NOT 

transitive. Examples: 
My heart is region-contained in my middle 

mediastinal space and my middle mediastinal 
space is region-contained in my thoracic 
cavity. So my heart is region-contained in my 
thoracic cavity.  

A filling is partially contained in my tooth and my 
tooth is partially contained in its socket, but 
the filling is NOT partially contained in the 
socket.  



Logical Properties-- Interaction with 
Parthood 

The three defined containment relations interact 
differently with the parthood relation. For 
example:  

If my heart is region-contained in my middle 
mediastinal space then any part of my heart 
is also region-contained in my middle 
mediastinal space. 

BUT: My tooth is partially contained its socket 
even though some are its parts (e.g. its 
crown) are NOT partially contained in the 
socket. 


